Superlinear Convergence of Affine - Scalinginterior - Point
نویسندگان
چکیده
We develop and analyze a superlinearly convergent aane-scaling interior-point Newton method for innnite-dimensional problems with pointwise bounds in L p-space. The problem formulation is motivated by optimal control problems with L p-controls and pointwise control constraints. The nite-dimensional convergence theory by Coleman and Li (SIAM J. Optim., 6 (1996), pp. 418{445) makes essential use of the equivalence of norms and the exact identiiability of the active constraints close to an optimizer with strict complementarity. Since these features are not available in our innnite-dimensional framework, algorithmic changes are necessary to ensure fast local convergence. The main building block is a Newton-like iteration for an aane-scaling formulation of the KKT-condition. We demonstrate in an example that a stepsize rule to obtain an interior iterate may require very small stepsizes even arbitrarily close to a nondegenerate solution. Using a pointwise projection instead we prove superlinear convergence under a weak strict complementarity condition and convergence with Q-rate >1 under a slightly stronger condition if a smoothing step is available. We discuss how the algorithm can be embedded in the class of globally convergent trust-region interior-point methods recently developed by M. Heinkenschloss and the authors. Numerical results for the control of a heating process connrm our theoretical ndings.
منابع مشابه
Superlinear Convergence of Affine - Scalinginterior - Point Newton Methods Forinfinite - Dimensional Nonlinear Problems Withpointwise Boundsmichael
We develop and analyze a superlinearly convergent aane-scaling interior-point Newton method for innnite-dimensional problems with pointwise bounds in L p-space. The problem formulation is motivated by optimal control problems with L p-controls and pointwise control constraints. The nite-dimensional convergence theory by Coleman and Li (SIAM J. Optim., 6 (1996), pp. 418{445) makes essential use ...
متن کاملA Superlinear Infeasible-Interior-Point Affine Scaling Algorithm for LCP
We present an infeasible-interior-point algorithm for monotone linear complementarity problems in which the search directions are affine scaling directions and the step lengths are obtained from simple formulae that ensure both global and superlinear convergence. By choosing the value of a parameter in appropriate ways, polynomial complexity and convergence with Q-order up to (but not including...
متن کاملSuperlinear primal-dual affine scaling algorithms for LCP
We describe an interior-point algorithm for monotone linear complementarity problems in which primal-dual affine scaling is used to generate the search directions. The algorithm is shown to have global and superlinear convergence with Q-order up to (but not including) two. The technique is shown to be consistent with a potential-reduction algorithm, yielding the first potential-reduction algori...
متن کاملOn Superlinear Convergence of Infeasible Interior-Point Algorithms for Linearly Constrained Convex Programs
This note derives bounds on the length of the primal-dual affine scaling directions associated with a linearly constrained convex program satisfying the following conditions: 1) the problem has a solution satisfying strict complementarity, 2) the Hessian of the objective function satisfies a certain invariance property. We illustrate the usefulness of these bounds by establishing the superlinea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999